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Abstract--The inclusion of the history term (often called "the Basset term") in the equation of motion 
of a sphere makes this equation non-explicit in the velocity or acceleration. For this reason, the numerical 
solution of the equation becomes cumbersome and computationally time-consuming. By the use of an 
integrodifferential operator, the equation of motion of a sphere is transformed to a second-order ordinary 
differential equation, which is explicit in the velocity. This equation is solved numerically to determine 
the effect of the history term on the calculations of particle velocity and trajectories in unsteady flows. 
The numerical calculations make use of empirical correction factors to account for the effects of finite 
Reynolds number. Computations are made with the fluid velocity being sinusoidal, random and 
monotonically increasing. It was observed that the effect of the history term was more pronounced at 
higher frequencies of the fluid velocity and for fluid-to-particle density ratios higher than 0.002. 
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I N T R O D U C T I O N  

The last 10 years have seen a dramatic increase in the number of  studies which involve the 
Lagrangian dynamic simulation of particles and bubbles. The wide and ever increasing availability 
of  computat ional  power has made it possible for single or ensembles of  spherest to be tracked in 
unsteady flow fields. Although an exact form of  the equation of motion of  the particles is available 
(Maxey & Riley 1983), researchers are generally using simplified versions of  it (Clift et al. 1978) 
which best suit their applications. Using the exact form of the equation of motion of the particles 
has two drawbacks: first, it is only applicable to very low Reynolds numbers; and second, it 
contains terms which are time-consuming when calculated repetitively. 

To counteract the first drawback, researchers have resorted to using empirical coefficients for 
several of  the terms in the equation of  motion (Hjelmfelt & Mockros 1966; Odar & Hamil ton 1964), 
most of  which are summarized in Clift et al. (1978). These coefficients multiply the Stokes drag 
term (c~), the added mass term (AA) and the history term, which is often called the Basset term 
(AH). The use of  these empirical coefficients has enabled accurate calculations of  particle trajectories 
in flow fields at high Reynolds numbers. These calculations have resulted in predictions of  particle 
characteristics and behavior, such as local concentration, dispersion in a turbulent field or mass 
and momentum exchange with the carrier fluid. 

Little progress has been made on the second drawback of the exact equation of motion (that 
certain terms, and especially the history term, are cumbersome to calculate in repetitive compu- 
tations). The vast majority of  the Lagrangian computations have been made for cases where the 
history term is very small in comparison to other terms. By using dimensional arguments this term 
is almost always neglected, a very convenient assumption which not only reduces the order of  the 
differential equation of motion of the particle and makes it explicit in the velocity, but also 
diminishes the memory requirements of  the computat ions by not retaining information on the 
history of  the acceleration of  the particle. Neglecting the history term does not change appreciably 
the calculations for particles of  intermediate or large size. However, it was observed that for fine 
evaporating particles the history term accounts for approximately 20% of the total force (Li & 

tTo avoid unnecessary repetition, the term spheres will be used in general to include rigid particles, bubbles or droplets. 
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Michaelides 1992). Neglecting the history term therefore, may result in a substantial error in 
particle velocities and positions. 

By using an integrodifferential transformation, Michaelides (1992) has transformed the equation 
of motion of the particle to a second-order differential equation. In this equation the history 
integral does not include the velocity of the particle. Therefore, the equation is explicit in the 
velocity of the particle and may be solved rather easily with a standard numerical technique. 
Another advantage of using the transformed equation is that it is no longer necessary to store past 
accelerations of the particle. This results in substantial computer memory reduction. It must be 
pointed out that this transformation still makes use of the past acceleration of the fluid itself, since 
the history term is transformed and not left out of the calculations. 

The application of the transformed equation is extended in this paper to include the effects of 
finite Reynolds number and particle acceleration. A transformed equation is derived, which 
includes the drag, added mass and history coefficients. Subsequently, calculations are performed 
with the transformed equation to determine the effect of the history term on the trajectories of 
particles under various flow conditions. The final result of these calculations is the determination 
of cases in which the effects of the history term are important and, therefore, this term should not 
be neglected in the computations. 

THE EQUATION OF MOTION OF A PARTICLE 

The equation of motion of a single particle in an unsteady flow is usually given in terms of the 
dimensionless relative velocity in the ith direction w~ = v i -  ue and reads as follows: 

c dw~ 

d-T + 2cl wi + 2AH 
o N / t  -- t7 

wi(O+) I dui - -  dtr + v/~ = - 2(1 - fl)-~- + 2(1 - fl)G,, [1] 

where fl is the ratio of the fluid-to-particle density and 2 is a parameter which includes the added 
mass term; 2 = 1/(1 + ½AAfl). Since AA is a function of the acceleration number (Odar & Hamilton 
1964), ). is not a constant. In [1], the velocity is made dimensionless by using the characteristic 
velocity of the fluid U0 and time is non-dimensionalized by using the characteristic time of the 
particle z~ = 2pp~t 2/9/~. The first term on the left-hand side is the acceleration of the particle. The 
second term is the drag term with the empirical coefficient cl. The third term represents the history 
of the particle as it moves in the unsteady flow field. The history term includes (the second part 
of the sum in the braces) the effect of a finite initial velocity of the particle w~. This part is often 
absent in commonly used expressions, where the assumption of zero initial velocity is made. It must 
be emphasized, however, that the exclusion of this part is tantamount to making the implicit 
assumption of zero initial relative velocity (Maxey 1987; Michaelides 1992). Of the terms on the 
right-hand side, the first represents the effect of the local acceleration of the fluid and the second 
the gravity/buoyancy effect. Gi=gizp/Uo, where gi is the gravitational acceleration, is the 
dimensionless gravity term. The Lagrangian derivative d/dt is with respect to the moving particle. 
The drag, added mass and history term coefficients c~, AA and A H are empirical expressions, which 
account for the finite Reynolds number effect. In the limit of very small particle Reynolds numbers 
their value is equal to 1. 

The initial condition for this equation is wi(0) = w~ and the initial acceleration is given by the 
following expression: 

dui 
dwi (0) = 2c, w~-2(1-fl)--~(O)+2(1-fl)G~-2A, weo6(t), [2] 
dt 

where 6(t) is the Dirac delta. The last term in [2] accounts for the impulse on the particle, which 
is introduced with finite velocity into a fluid. 

Although [1] has been derived for rigid spheres at the limit of low Reynolds numbers (and strictly 
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speaking it should only be applied to rigid spheres), it has been used extensively in calculations 
with viscous spheres (bubbles, droplets) or with non-spherical particles (Clift et al. 1978). 

Regarding the history integral, it must be pointed out that recent results by Lawrence & 
Weinbaum (1988) and by Yang & Leal (1991) indicate that the kernel of the history integral as 
shown above is a special case applied only to rigid spheres. They have observed that when the 
sphere diverges from sphericity or perfect rigidity, the kernel of the history integral attains a more 
complicated form. Actually, in the case of a viscous sphere, Michaelides & Feng (1993) have shown 
that an explicit form (in the time domain) of the equation of motion can be obtained only in some 
special cases. Also, Mei et al. (1991) and Lovalenti & Brady (1993) allude to a different decay of 
the history integral (initially the decay is of the order of t-l/: and later of the order t-2) when the 
inertia terms in the momentum equation of the fluid are considered. However, even with the 
different kernel or the faster decay in the latter stages of the motion, a history integral is always 
present. 

Realistic Lagrangian calculations with the equation of motion at finite Reynolds numbers are 
always done with coefficients similar to those used in [1]. Clift et al. (1978) report such calculations 
for the acceleration of a particle from rest, where they show that the history term may account 
for as much as 20% of the acceleration at the early stages of the particle motion. 

Equation [1] is not explicit in w~ because of the history term. Hence, solving it numerically by 
any method implicit or explicit, involves time-consuming iterations. If the history term is neglected, 
the equation becomes explicit in the relative velocity and one may obtain particle velocities and 
trajectories easier and faster. It is believed that this is the main reason why the vast majority of 
repetitive computations (e.g. with Monte-Carlo simulations) have been conducted with the history 
term neglected, while other terms of apparently lesser magnitue (e.g. added mass) were retained. 
While it is correct to assume that the history term is negligible in comparison to the other terms, 
this is not always the case, expecially when the size of the particles is small and the fluid velocity 
varies at high frequency. 

By the use of an integrodifferential transformation, [1] is converted into an explicit equation with 
respect to the particle relative velocity. This is accomplished by transforming the equation in the 
Laplace space, rearranging the resulting algebraic equation and transforming back into the time 
variable (Michaelides 1992). The resulting equation is a second-order differential equation and 
reads as follows: 

d2w, ( 9f12A2"~ dw~ d2ue dui 
dt 2 F2 2Cl 2 ] dt +22c2w'= - 2 ( 1 - f l ) ~ - ~ . 2 ( 1 - f l ) c ,  d---t- 

d2ui 
t der2 

+ 2 2(1 -- fl)AM N/~n fo (t = ~-r-)O.5 da + 2 AH ~/-~2-~- t 

x 2 ( 1 - f l ) u ' ( 0 ) - 2 ( 1 - f l ) G , + c , - ~  

9flA~ /9/9/9~9fl 2 
4 2 2 ( 1  - - f l )C  1 Gi+,~,2Wio ~ 6( t )+ ) ,AnN/~  w~06 (t), 

with the following initial conditions for the velocity, 

[3] 

w~(0) = w~, [4a] 

and for the acceleration (this is obtained directly from [1]), 

dwi 
(0) = - 2c~ w~ - 2(1 - fl)u;(O) + 2(1 - f l)G~- w ~ 2 A H ~ n  6(0. [4b] 

dt 

The Dirac delta appears in the above equations always in conjunction with the initial relative 
velocity w~ only. This is a manifestation of the fact that if the particle is introduced in the flow 
with a finite relative velocity at time t = 0, then an impulse acts upon it as a result of the fluid's 
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reaction. In the case of zero initial relative velocity, which is of interest in most practical cases, 
the transformed equation becomes: 

d2wi ( 9fl2 A 2"] dw, d2ui dui 
dt---T+2 2c, 2 -Jdt -+22c~w~= -2(1-fl)-d-~-22(1-fl)c' d---[ 

d 2 u i  

+22(1 -~)~M (t _ a)0.------/da + 2 ~Z~H ~-~ 

x ( ( 1 - B ) u ' ( 0 ) - ( 1 - ~ ) a , )  + ,~c , (1-B)a i .  [5] 

Equations [3] and [5] are explicit in wi. Their numerical solution may be obtained by any standard 
numerical solution technique, explicit or implicit, and normally does not require iterations. They 
also have the additional advantage that the history integral term contains the second derivative 
of the fluid velocity only. Therefore, their solution requires less computational memory than [1]. 
The disadvantage of the equations is that they are second-order differential equations and that they 
contain more terms than [1]. However, the numerical advantages by far outweigh the disadvan- 
tages. When computations for particle trajectories were made in a sinusoidal flow field (Michaelides 
1992), the transformed equation resulted in a CPU time reduction from 6- to 11-fold. 

While transforming [1] it appears that the coefficients ct, AA and A M have been treated as 
constants. This procedure, although it appears not to be mathematically rigorous, is logically 
equivalent to the one that enables us to use these empirical coefficients in the first place: one first 
derives the governing equation at the limit of low Reynolds numbers and subsequently multiplies 
the resulting terms by the respective empirical coefficients. Similarly in the present method, the 
transformed equation of motion is first derived at the low Reynolds number limit and subsequently 
the various terms arising are multiplied by their respective empirical coefficients. This approxi- 
mation enables the transformation, which is impossible to achieve otherwise. 

SOLUTION OF THE EQUATION--DOES THE HISTORY TERM MATTER? 

Having developed an explicit form (in particle velocity) of the equation of motion of the particle, 
it is now easy to perform computations for particle velocities and trajectories in any (known) 
unsteady flow field. The question that needs to be answered is "Under what conditions does the 
history term in this equation make a substantial contribution to the desired results?" and also 
whether time-integral quantities, such as particle position or dispersion, are substantially affected. 
In the cases where the history term does not play an important role one may neglect it and use 
the simpler form of the first-order differential equation ([1] without the history term), which is easier 
and more convenient to solve. 

The equation of motion of the particle is solved for the following three cases: (a) the case of 
sinusoidal fluid flow, where the response of the particle is followed for one-half of the cycle; (b) 
the case of a random velocity field superimposed on a uniform flow; and (c) the case of fluid 
velocity, which increases monotonically in steps of random magnitude and duration. Case (c) is 
obtained from case (b) by taking the absolute values of the same random numbers and adding them 
to the previous value of the fluid velocity. 

Throughout the calculations the following empirical equations were used for the three coefficients 
cl, AA and A.: 

0.132 Ac 2 0.5 mc 3 
c j = l + 0 . 1 5 R e  °667, AA=2.1 (1+0.12Ac2) and A.=0.48-t  ( l+Ac)3,  [6a] 

where Rep is the particle Reynolds number and Ac is the acceleration number. In terms of the 
dimensionless velocity and acceleration and the other quantities defined above, these numbers are 
as follows: 

_ = 1 8 f l d w i .  Rep 2~lUowitpv and Ac [6b] 
# Rep dt 
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The drag coefficient is the one which is most often used in particle flow simulations. For the other 
coefficients we have used, for demonstration purposes, the expressions derived by Odar & Hamilton 
(1964). These expressions are most frequently used and have been verified by Tsuji et  al. (1991) 
for particle flows at higher Reynolds number. 

In the sinusoidal case, where the particle is driven by a sinusoidal flow velocity u~ = sin (09 0,  the 
particle velocity is calculated with and without the history term. Figure l a shows the fluid and 
particle velocities after one-half cycle for a dimensionless frequency co = 10 (the frequency is made 
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dimensionless by multiplying by the characteristic time of the particle). Figure lb shows the 
response of the particle when co = 1. Both figures correspond to fl = 1/2.7, which is approximately 
equal to the density ratio in water-sand mixtures. It is evident that the particle lags the motion 
of the fluid and that the amplitude of its velocity is lower. It is also seen that the particle velocity 
is affected more in the higher frequency case. 

It is apparent from figures la and lb that the inclusion of the history term in the equation of 
motion of the particle has an effect on both the amplitude of the velocity and the phase lag of the 
particle with respect to the fluid. We may define an amplitude ratio r/and a phase difference ~b for 
the velocities of the particle and the fluid and calculate these quantities with and without the history 
term. Figure 2a shows the velocity ratio r/as a function of the dimensionless frequency for fl = 1/2.7 
and figure 2b shows the phase difference between the fluid and the particle for the same 8. The 
frequency is made dimensionless by multiplying by the characteristic time of the particle. It is seen 
in both figures that the higher discrepancies in the results with and without the history term occur 
at higher frequencies. Neglecting the history term at the higher frequencies would result in the 
underprediction of the velocity ratio by 15-20%. 

The effect of the density ratio fl was found to be of importance in the range 0.7 > B > 0.002. 
Figure 3 shows the dependence of the velocity ratio r/on fl at the dimensionless frequency of 10. 
Even at this rather high frequency it is apparent that neglecting the history term makes very little 
difference in gas-solid flows. However, in liquid-solid flows (where fl is close to 0.3) neglecting the 
history term may result in errors of the order of 20-30%, even at moderate frequencies. 

Calculations were also conducted with the velocity of the fluid being equal to 1 + u', where u' 
is a random velocity field. This random velocity field has a standard deviation 0.2 and each random 
component acts on the particle for a random but positive time interval At. Figure 4 shows the 
particle velocity with and without the history term for 10 time intervals. It is evident that when 
the fluid velocity is randomly fluctuating around a given value the particle velocity with the history 
term sometimes is less and sometimes more than the particle velocity without the history term. 
When one integrates these velocities to obtain average velocities or particle trajectories (and 
hence particle dispersion), the alternating differences cancel. Therefore, one expects very small 
differences in the final position of the particle after a large number of velocity steps. This was 
actually observed when the calculations proceeded to 100 time intervals: regardless of the standard 
deviation of the random time intervals, the final positions of the particle, calculated with and 
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without the history term, were < 1% from each other. This means that neglecting the history term 
has insignificant impact on calculations for particle dispersion or average particle velocity. 

The effect of the history term was found to be significant on particle disperison when the fluid 
velocity varied monotonically. This variation was simulated by adding to the instantaneous 
fluid velocity the absolute value of a random number acting after an interval At. Figure 5 shows 
the fluid velocity field and the resulting particle velocity, calculated with and without the history 
term. In the calculations without the history term the particle velocity lagged considerably when 
the time intervals were short. Because of this, particles traveled faster and further when the history 
term was included. The discrepancy is manifested in the distance particles traveled after 100 time 
intervals. Figure 6 shows the fractional difference in the distance traveled as a function of the 
standard deviation of the time intervals. The inverse of the latter is an approximate measure of 
the frequency of variation of the velocity field. It is seen that the discrepancy of the calculations 
with and without the history term becomes significant at low standard deviations of time (which 
correspond to high dimensionless frequencies of the velocity field). 

The results depicted in the figures 4~6 show that the effect of the history term can be justifiably 
neglected in all the cases when average results are sought resulting from a random fluid velocity. 
However, if the fluid velocity varies monotonically (e.g. in nozzle flow or a jet) the history term 
may only be neglected if the dimensionless frequency of variation of the velocity field is relatively 
low. 

It must be emphasized that the effect of the particle size is included in the dimensionless times 
and frequencies. These quantities are made dimensionless by using the characteristic time of the 
particle zp = 2pp~2/9~. Thus, a dimensionless frequency o9 corresponds to a real frequency of 
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O r ~--- 9~/(2pp~t2). Hence, doubling the particle size quadruples the flow frequency, for which the 
effects of the history term become significant. Consequently, the effect of the history term is 
considerably more significant in calculations involving fine particles than coarse particles, other 
parameters being equal. 

AN HISTORICAL NOTE 

It is common to encounter in the literature reference to the history term in the equation of motion 
of the particle as the "Basset force" or the "Basset term". This is because the first introduction 
of the term is frequently attributed to the British hydrodynamicist A. B. Basset (Basset 1888). 
Indeed, in Basset's A Treatise on Hydrodynamics (Vol. 2, p. 291), the term appears with the other 
forces acting on a particle moving in a viscous fluid. Basset derived this integral term from the 
transient hydrodynamic reaction of the fluid to the motion of the sphere (p. 289). However, the 
French physicist J. Boussinesq had already published (in 1885) an article where the same integral 
term appears explicitly in the expression of the fluid resistance to the motion of the particle 
(Boussinesq 1885a). The equation for the fluid resistance derived by Boussinesq is in the form most 
commonly used today. Boussinesq derived this term and the equation for the resistance of the 
sphere based on a general method for the solution of equations of potentials in spherical 
coordinates. This solution is exposed in his book on the applications of potentials, also published 
in 1885 (Boussinesq 1885b). In this book (pp. 413--416) Boussinesq also points out the presence 
of similar history integrals in several heat transfer processes. Boussinesq's paper and book represent 
a thorough derivation of the equation of motion of a particle and leave no doubt of his precedence 
regarding the discovery of the history term. 

It is, therefore, evident that Boussinesq has precedence over Basset in the derivation and 
introduction of the history term in the equation of motion of a sphere. If this term is to be named 
after someone, it is neither appropriate nor fair to name it after the second person who derived 
it. For this reason it should be called either the "Boussinesq-Basset" term or simply the "history" 
term. 
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C O N C L U S I O N S  

By using an integrodifferential operator the full equation of motion of the particle is 
transformed to a second-order ordinary differential equation which is explicit in the particle 
velocity. Empirical coefficients for the drag, history and added mass terms account for deviations 
from the creeping flow assumption. Since the transformed equation is explicit in the particle 
velocity, it is easier and computationally more efficient to perform calculations with it. Calcu- 
lations were performed for three cases of  fluid velocities: (a) sinusoidal; (b) random superposition 
on a uniform velocity value; and (c) monotonically increasing by random steps. It was found that 
the history term can be neglected in the following cases: (a) random fluid velocity field, if one is 
interested in time-average results or integral quantities; (b) the fluid-to-particle density ratio is 
< 0.002, which corresponds to most gas-solid flows; and (c) the dimensionless frequency of 
variation is < 0.5. On the other hand, it was observed that the history term is important in the 
calculations if the dimensionless frequency of  velocity fluctuations is > 0.5 in the sinusoidal case 
and > 2 in the monotonically increasing case (even if only average results are of  interest). The 
effect of  the history term is more pronounced when fl is in the range 0.7-0.002, which corresponds 
to liquid-solid flows. 
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